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SUMMARY. Traditional studies of short-term air pollution health effects use time series data, while cohort studies generally
focus on long-term effects. There is increasing interest in exploiting individual level cohort data to assess short-term health
effects in order to understand the mechanisms and time scales of action. We extend semiparametric regression methods used
to adjust for unmeasured confounding in time series studies to the cohort setting. Time series methods are not directly
applicable since cohort data are typically collected over a prespecified time period and include exposure measurements on
days without health observations. Therefore, long-time asymptotics are not appropriate, and it is possible to improve efficiency
by exploiting the additional exposure data. We show that flexibility of the semiparametric adjustment model should match
the complexity of the trend in the health outcome, in contrast to the time series setting where it suffices to match temporal
structure in the exposure. We also demonstrate that pre-adjusting exposures concurrent with the health endpoints using
trends in the complete exposure time series results in unbiased health effect estimation and can improve efficiency without
additional confounding adjustment. A recently published article found evidence of an association between short-term exposure
to ambient fine particulate matter (PMs5) and retinal arteriolar diameter as measured by retinal photography in the Multi-
Ethnic Study of Atherosclerosis (MESA). We reanalyze the data from this article in order to compare the methods described

here, and we evaluate our methods in a simulation study based on the MESA data.
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1. Introduction

Epidemiologic evidence demonstrates an association between
exposure to fine particulate matter (PMjy5) air pollution and
adverse health effects. Since air pollution is a modifiable
risk factor, it is important to accurately estimate the magni-
tude of health effects and understand their mechanisms and
time scales (Brook et al., 2010). The Environmental Protec-
tion Agency (EPA) has a legislative mandate to set stan-
dards for short-term and long-term air pollution levels to
protect human health. Epidemiologic evidence plays a central
role in establishing the scientific basis for these regulations
(Environmental Protection Agency, 2006).

Short-term air pollution exposure on a time scale of hours
or days is most likely associated with acute or transient health
outcomes. A traditional approach to assessing the acute im-
pact of short-term exposure uses population outcomes such
as hospitalization or mortality rates in time series studies
(Schwartz, 1994; Sheppard et al., 1999; Samet et al., 2000;
Dominici, McDermott, and Hastie, 2004). Other designs used
for this purpose include case-crossover studies (Janes, Shep-
pard, and Lumley, 2005), which are closely related to time
series methods, and panel studies in which a small cohort of
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individuals are followed longitudinally (Dominici, Sheppard,
and Clyde, 2003; Janes, Sheppard, and Shepherd, 2008).

Air pollution cohort studies have focused primarily on the
cross-sectional effect of long-term air pollution exposure on
chronic health outcomes (Dockery et al., 1993; Pope et al.,
2002; Miller et al., 2007). Long-term exposure could refer to
a subject’s entire lifetime or to a period on the order of a
year or more. There is growing interest in exploiting cohort
data to estimate associations between short-term exposure
and acute health effects in order to better understand the
biological mechanisms by which air pollution causes disease.

We consider the recently published analysis by Adar et al.
(2010) of the association between PM, 5 exposure and reti-
nal microvasculature as a marker of subclinical cardiovascular
disease in the Multi-Ethnic Study of Atherosclerosis (MESA).
While Adar et al. (2010) evaluate both chronic and acute ef-
fects on retinal arteriolar and vascular outcomes, we focus on
the acute association with daily air pollution exposure. The
dominant PM, 5 variability is temporal rather than spatial, so
we follow the approach in Adar et al. (2010) and treat expo-
sure as a spatially homogeneous time series within metropoli-
tan areas.
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The exposure and the outcome can have seasonal and me-
teorological trends, so we need to control for shared sources
of temporal variability to estimate unconfounded associations
with air pollution. A methodology developed for time series
studies is to include semiparametric spline terms in a regres-
sion model to adjust for temporal confounding. For this ap-
proach to be effective, we need to ensure that the spline terms
contain sufficient degrees of freedom (df) to fully adjust for
the temporal structure. A number of methods have been pro-
posed for selecting df in time series studies (Dominici et al.,
2004; Peng, Dominici, and Louis, 2006), but the existing liter-
ature does not address the implications for cohort study data.

The first objective of this article is to adapt the semipara-
metric regression methodology to cross-sectional cohort stud-
ies. The theory does not carry over directly for a number
of reasons: (i) the relevant asymptotics are different, as in a
cohort study we are concerned with large n asymptotics corre-
sponding to a large number of subjects, whereas in time series
studies the interest is in large T asymptotics corresponding to
long study time periods; (ii) there can be multiple or no health
observations on a given day, in contrast to a time series study
where a single population-level health outcome is available
on each day in a given geographic region; (iii) different as-
sumptions about sources of randomness in the exposure may
be appropriate for the two study designs; (iv) inter-subject
variability makes it more difficult to accurately identify the
seasonal and meteorological trends in cohort health data than
in time series data; and (v) we need to be concerned with
subject-specific covariates in cohort data such as blood pres-
sure that could have their own temporal trends.

Our second objective is to propose a more efficient alterna-
tive to semiparametric regression. Since cohort study data
often include air pollution measurements on days without
health outcomes, semiparametric regression does not utilize
all of the available exposure data. An alternative is to pre-
adjust the exposure for temporal variability due to seasonality
or meteorology and then use this modified exposure to esti-
mate an unconfounded effect by ordinary least squares (OLS)
or generalized least squares (GLS), without further adjust-
ment in the disease model. Similar ideas have been consid-
ered for time series studies, but it is not clear that there is
an advantage in that setting since the conventional approach
already utilizes all of the available exposure data (Fung et al.,
2003).

We summarize the data and findings from Adar et al.
(2010) in Section 2, and we introduce notation and describe
our statistical framework in Section 3. In Section 4, we for-
malize the semiparametric regression methodology for cohort
studies and discuss the required number of df to obtain unbi-
ased effect estimates and valid standard errors. In Section 5
we describe the pre-adjustment methodology. We illustrate
our findings with a simulation study in Section 6 and reana-
lyze the retinal arteriolar data from MESA in Section 7. We
conclude in Section 8 with a discussion, including guidance on
when pre-adjustment followed by OLS or GLS is preferable
to semiparametric regression.

2. Retinal Arteriolar Diameter and Air Pollution

A recently published analysis of the MESA cohort found ev-
idence of an association between decreased retinal arteriolar
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diameter and elevated exposure to PMs 5 air pollution on the
previous day (Adar et al., 2010). As discussed by Adar et al.
(2010), previous studies have found that changes in the mi-
crovasculature, including retinal arteriolar diameter, are as-
sociated with increased risk of myocardial infarction, stroke,
and cardiovascular mortality, independent of other traditional
risk factors. Therefore, these findings provide support for the
hypothesis that reported associations between air pollution
and the development and exacerbation of clinical cardiovas-
cular disease are related to microvascular phenomena.

MESA is a prospective cohort study designed to examine
the progression of subclinical cardiovascular disease (CVD).
It enrolled 6814 men and women 45-84 years of age who were
free of clinical CVD at entry from six U.S. communities in
Baltimore, Chicago, Los Angeles, New York, Minneapolis-St.
Paul, and Winston-Salem. Details of the sampling, recruit-
ment, and data collection are described by Bild et al. (2002).
The MESA cohort provides an excellent infrastructure for
assessing the relationship between air pollution and various
indicators of cardiovascular disease, particularly within the
framework of MESA Air, an ancillary study to MESA funded
by the EPA that includes collection of additional air quality
monitoring and health endpoint data (Kaufman et al., 2012).

Retinal arteriolar diameter, a marker of microvasculature
phenomena, was measured in MESA participants by reti-
nal photography. Retinal photography was performed dur-
ing the second MESA examination between August 2002 and
January 2004. A total of 6176 individuals had retinal pho-
tographs taken, and 4607 subjects had complete data for in-
clusion in this analysis. Retinal arteriolar diameters within an
area equal to 0.5—1 disc diameters from the optic disc mar-
gin are summarized as central retinal arteriolar equivalents
(CRAE).

Air pollution exposures on the day prior to retinal pho-
tography were assigned based on the area-wide average con-
centrations from EPA Air Quality System (AQS) monitoring
stations with complete time series during the period of inter-
est. In light of the complex topography in the Los Angeles
basin, the analysis incorporated four sub-regions: coastal Los
Angeles, downtown Los Angeles, Riverside, and the area be-
tween Los Angeles and Riverside, giving a total of nine sepa-
rate regions in our analysis. The data in Figure 2 show clear
evidence of temporal trends in meteorology and PMs 5 con-
centrations. Inter-subject variability makes it difficult to de-
termine if there are temporal trends in CRAE measurements,
but as noted by Adar et al. (2010) there is scientific reason
to believe such trends are present. In a multivariate linear
model with a full suite of subject-specific covariates and semi-
parametric adjustment for season with 12 df per year in each
region and for meteorology with 6 df in each region, Adar
et al. (2010) found a —0.4 pm (95% CI —0.8 to 0.1) decrease
in CRAE per 10 pg/m? increase in the previous day’s PMa 5
concentration.

The analytic approach used by Adar et al. (2010) was
chosen to be consistent with standard practice in air pollution
time series studies. The present work was motivated by a de-
sire to (i) improve precision by more fully utilizing exposure
data on days when no health outcome measurements were
available and (ii) determine if alternative criteria for selecting
df were either necessary to ensure unbiasedness or preferable
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to increase precision. In Section 7, we will reanalyze this
dataset using the methods proposed here.

3. Statistical Framework

3.1.  Overview of Model

Consider a cohort study with a continuous health outcomes
yi, exposures x;, and subject-specific covariates z; for subjects
i=1,...,n, measured at follow-up times t;. We assume the
t; can take values in {1,...,7T} and note that the exposure
is defined and observable at every time in {1,..., T}, while
the outcome and subject-specific covariates are only observed
on days that study subjects have clinical follow-up. We refer
to the units of time as days, although other timescales can
also be considered. We focus on the asymptotic properties of
estimators for large n, keeping T fixed, since the number of
subjects is the natural asymptotic scaling for a cohort study.

In Section 3.2, we describe a model for the random follow-
up times #;. In Sections 3.3 and 3.4, respectively, we describe
models for the x; and z; conditional on the ;. Finally, in Sec-
tion 3.5 we describe a model for the y; conditional on the x;,
z;, and t;.

3.2.  Follow-Up Time

In many observational studies, including MESA, follow-up
times are determined by clinic visit dates. We assume clinics
make an effort to schedule multiple appointments on a subset
of the available dates, resulting in clusters of subjects with the
same follow-up times, as we see in the MESA data. It is im-
possible to know the exact procedure by which this occurs, so
we adopt the following model. Assume the study participants
are divided into clusters of varying sizes such that the cluster
visit days are chosen independently of each other, and each
subject is pre-determined to be in a particular cluster. No-
tice that under this model, there is no way of knowing from
the data whether individuals with clinical follow-up on the
same day are part of a shared cluster. Our analyses assume
that they are, which can lead to slightly conservative inference
since the number of independent clusters is underestimated.

We have also evaluated the performance of our estimation
methodology in simulations with alternative clustering mech-
anisms and with no clustering (i.e., independent follow-up
times). The results are similar for different clustering mecha-
nisms and the differences between methodologies are less pro-
nounced when there is no clustering since there are fewer days
without health outcomes (not shown).

3.3.  Ezxposure Model
We assume there is a shared time series of exposures x(-)
defined on r € {1,...,T} such that conditional on #; we can

write x; = x(#;) and

x(t) = g(t:) +n(t:), (1)

where g(-) is a smooth function of time and n(-) is residual
temporal variation.

An important question is whether to regard the function
n(-) as deterministic or random variation around the temporal
trend g(-). While it is conventional to regard 7(-) as stochastic,
say with the n(¢) forz € {1, ..., T} i.i.d. normal with mean zero
and variance 03 (Dominici et al., 2004), it is not clear what
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stochastic data-generating mechanism could underly such a
construction in a cohort study. Furthermore, even if it is ap-
propriate to regard n(-) as stochastic, the assumption that
there is no autocorrelation may be problematic.

We believe it is most natural to regard n(-) as determin-
istic and assume the sources of randomness in hypothetical
repeated experiments are the choice of subjects in the cohort,
their disease states, and the follow-up days #; on which their
disease states are measured. In what follows, we consider the
implications of treating 7n(-) as either deterministic or stochas-
tic (i.i.d. normal as described above).

3.4.

Some subject-specific covariates will have temporal structure
(e.g., blood pressure) while others will be independent of time
(e.g., height). To accommodate both types of covariate, we
decompose the subject-specific covariates as z; = w(t;) + ¢;,
where w(-) is the temporal trend component and the ¢; are
independent of time and have mean zero. Notice that unlike
our model for air pollution exposure, subject-specific covari-
ates are not purely a function of time and we always model the
residual term ¢; as i.i.d. normal, with the stochasticity derived
from random selection of subjects from the superpopulation.

Subject-Specific Covariates

3.5. Disease Model

Finally, we assume a linear disease model

yi=xife +zB, + f(t;) + &, (2)

where B, is the parameter of interest, f(-) is a smooth func-
tion of time, and the ¢; are i.i.d. normal random variables with
mean zero and variance o2. Our objective is to derive efficient
and unbiased estimates of 8,. We omit dependence on mete-
orology to simplify notation, but no substantive changes are
required to include this in the analysis.

We observe each of the y; and z; and the corresponding
follow-up times ;. We also assume we are able to measure
the shared exposure time series x(-) without error, so that we
know x; = x(#;). The challenge in estimating S, is to control
for temporal confounding that manifests itself as a correla-
tion between f(-) and the exposure time series x(-). If we
observed f(#;) for each #; we could easily adjust for temporal
confounding by including it in the regression model. Since we
do not observe the f(#), we need to assume a flexible struc-
ture for f(-) and exploit this structure to adjust for temporal
confounding.

3.6.

We extend the framework in Dominici et al. (2004) and as-
sume that f(-), g(-), and w(-) can be represented by regres-
sion splines with my, mo, and ms3 df, respectively. There is
always some error in assuming that a smooth function can
be fully represented by a particular regression spline basis,
but if we allow sufficient df this error is relatively small. Let
hi(-), h2(-), ... be a possibly infinite sequence of orthogonal
regression spline basis functions, and for any positive inte-
ger m let H,,(-) = (h1(-), ..., hn(-)) be the vector-valued func-
tion comprised of the first m basis functions. We can write
f()=H,, ()y,, and g(-) = H,,(-)a,, for some m; x 1 and
mo x 1 vectors of coefficients y,,, and a,,, respectively, and
w(-) = H,5(-)8,, for some ms x r matrix of coefficients 8.

Regression Splines
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In practice we do not know how many df are needed to
adequately describe f(-), g(-), or w(-). It is tempting to esti-
mate these quantities from the data using a method such as
generalized cross-validation or Akaike Information Criterion
(AIC). These methods have been applied for estimating the
degree of smoothness in time series datasets where the resid-
ual variability is relatively small (Peng et al., 2006). However,
such methods favor parsimony and may underestimate the
required number of df if the smooth trends are difficult to
identify in the data. In addition, a data-driven approach such
as this requires using some or all of the data twice, making it
difficult to estimate valid standard errors.

We prefer to determine my, mo, or ms based on scientific
judgment about the degree of variability in the seasonal and
meteorological trends in the outcome, exposure, and subject-
specific covariates (Schwartz, 2006) and to assess the sensi-
tivity of our findings by fitting the model with additional df
(Peng et al., 2006). We assume we can estimate my, ms, or
m3 well based on scientific considerations, or at least that
we have valid lower bounds for these quantities. Finally, to
simplify the exposition we assume m3 < min(my, ms3). The ar-
guments that follow can be adapted easily to situations where
ms3 > min(my, ms).

4. Semiparametric Regression Model

The first approach to adjusting for temporal confounding
is semiparametric regression. As adapted by Dominici et al.
(2004) for time-series studies, the semiparametric regression
methodology is to estimate 8, by OLS from the model

yi = xiB + 2B, + H, (t:)y,, + & (3)

for some value of m. If m < m; then & may not be identi-
cal to &. Assuming the degrees of smoothness of f(f) and
g(t) are known, two natural choices are to take m =m; or
m = mo, which correspond to including sufficient df in the
disease model to account for the trend in the health out-
come or the exposure, respectively. Dominici et al. (2004)
demonstrate for time series studies that it is sufficient to
take m = min(m,mz). We generalize their development to
cohort studies and explain why in this setting it is preferable
to choose m > m;.

4.1.  Sufficient Degrees of Freedom to Account for the

Trend in the Outcome (m = my )

The analysis is straightforward if we set m = m, since the
model in (3) fully adjusts for f(-) = H,,(:)y,,. We can rely
on fixed covariate regression results, conditioning first on the
t; and on n(-) if it is random, to conclude that there is no bias
in estimating B, and that classical standard error estimates
are valid.

4.2.  Sufficient Degrees of Freedom to Account for the

Trend in the Exposure (m = ms)
Suppose we set m = my in a scenario where m; is greater than
my (the results from Section 4.1 are applicable if my is greater
than or equal to m;). Define ¥, /my = Vgs1s--+» VY, ) and
the vector-valued function H,,, jmg () = (hmgt1 (), - ooy By ().
For fixed T and conditional on the 7;, we define H,, /m, =
(Hoyjms (1) oo v Hyy o (8)7) 7, and denote M, m, in the
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special case of n = T and t; = i corresponding to exactly one
observation per day. We similarly define H,,, and H,,. Con-
sidering a fixed sequence of 7(#;) (conditionally, if 5(-) is ran-
dom), we define 7 = (1,...,n,)" and 7= (n(1),...,n(T))".
We can now adapt an argument from Dominici et al. (2004)
to show that as n — oo,

7ITHMH/MQ Yy /mo
— T I %] 1g n .
i (1 ~H,, (8], H,,) H,L) n

- a.s

E(ﬁx - /Sx) -

(4)

See Web Appendix A for details.

The right-hand side of (4) is non-zero for a general deter-
ministic function 7(-), so B, is asymptotically biased. Sym-
metry implies the right-hand side of (4) has zero expectation
if the n(¢) for t € {1, ..., T} are i.i.d. normal with mean zero,
in which case we conclude B, is asymptotically unbiased for
large n. In an asymptotic analysis appropriate for time series
studies but not cohort studies, Dominici et al. (2004) show the
right-hand side of (4) converges to zero as the study duration,
T, converges to infinity, even for fixed n(-).

Standard error estimation is also an open problem for m =
mo. Classical fixed covariate regression results do not apply
since the bias is only eliminated by averaging over realizations
of n(-), and random covariate regression methods with robust
“sandwich” standard errors (White, 1980) do not apply since
the shared random function 7n(-) induces correlation across all
study subjects. We recommend selecting m based on m, as
in Section 4.1.

5. Pre-Adjusting the Exposure

We consider an alternative to semiparametric regression that
can be more efficient if fitting (3) with sufficiently large m
requires too many df relative to the available health data.
The idea is to remove the temporal trend from the exposure
time series and then estimate B, without further concern for
confounding. This is particularly appealing when there are
many days with exposure data on which there is no health
data. We assume in this section that clinic visits are equally
likely on each day in {1,..., T}, with obvious modifications
for other follow-up day probability distributions.

We estimate g(-) by g(-) = H,,(-)&, where &, is the OLS
estimate from fitting

x(-) = H, (e + (1)

based on the data {x(1),...,x(T)} and {H,(1),..., H,(T)}.
If m < my then 7(-) may not be identical to n(-). We define
() = x(-) — &(*) to be the pre-adjusted exposure from which
the estimated trend is removed, and we estimate 8, by OLS
from

yi = 0(t)Be + 8(t:) B + 2B, + (f(1) + &), (5)

regarding f(#) + & as the unobserved random noise. equa-
tion (2) implies that (5) holds with B, = g, but we estimate
these quantities separately and only interpret B . since we will
show that for sufficiently large m it is not confounded by f(-).
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For any two random functions of time ¢(-) and
¥(-), we define stochastic orthogonality on {1,...,T} by
E Zle d(1)y(r) = 0. A straightforward extension of Lemma 1
in White (1980) shows that f, estimated from (5) is strongly
consistent for B, if #j(-) is stochastically orthogonal to 2(-),
f(-), and each element wy(-) of w(-) for k=1,...,r.

It is always true that #(-) is stochastically orthogonal to
&(+) since Z[T:l 71(-)&(-) holds by construction. In the next two
subsections, we give conditions on m to guarantee stochastic
orthogonality with f(-) and the wy(-), and we discuss calcu-
lation of standard errors.

5.1.  Sufficient Degrees of Freedom to Account for the
Trend in the Outcome (m = my)

If we set m = my, then by construction 2;1 71(t)he(¢) = 0 for
k=1,...,mq, from which it follows that 7(-) is stochastically
orthogonal to f(-), regardless of whether 7(-) is fixed or ran-
dom. Unlike the semiparametric regression model in the Sec-
tion 4.1, however, this is not sufficient to guarantee strong con-
sistency of B, due to inclusion of time-varying subject-specific
covariates z; in the model. We have assumed m; > m3 so that
similar logic guarantees that 7(-) is stochastically orthogonal
to the wy(+). If there is reason to believe that m3 > m; then m
should be chosen to be at least as large as m3. The required
orthogonality conditions hold for fixed 5(-), or conditionally
if n(-) is random, so GEE standard errors (Liang and Zeger,
1986) can account for clusters of subjects with follow-ups on
the same day.

5.2.  Sufficient Degrees of Freedom to Account for the
Trend in the Exposure (m = ms)

Suppose now that we set m = my in a scenario where m; > ms.
We cannot rely on the arguments from Section 5.1 for a fixed
n(-) to conclude that B, is strongly consistent for B,. How-
ever, if we assume the n(¢) for t =1, ..., T are i.i.d. random
variables with mean zero and are independent of the ¢, &,
and ¢;, then it follows immediately that Ef(r) = 0 for each
t=1,..., T and that 7(-) is stochastically orthogonal to f(-)
and the wi(-), and there is no asymptotic bias. However, sim-
ilar to Section 4.2, it is not clear how to calculate standard
errors in this setting because the estimated subject exposures
7i(;) in (5) are all correlated with each other due to their
shared dependence on 75(-). Therefore, we recommend choos-
ing m based on the smoothness of temporal trends in the
outcome as in Section 5.1.

5.3.  GLS to Improve Efficiency

Comparing (3) and (5), we see a tradeoff in efficiency between
semiparametric regression and pre-adjusting the exposure. If
we pre-adjust the exposure, we can estimate BX from a model
with m fewer degrees of freedom. However, this comes at the
cost of adding f(-) to the unmeasured residual in the disease
model, suggesting that it is better to use semiparametric re-
gression when f(-) is large enough to be a precision variable.
We now describe a strategy for improving efficiency of using
a pre-adjusted exposure in such situations.

When we estimate B, from (5) by OLS there is a loss of
efficiency from weighting the contrasts between all subjects
equally, especially if the shared component of the residual f(-)
is relatively large. It is preferable to assign larger weights to
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contrasts for pairs of subjects i and j such that f(z) and f(z;)
are similar, which is analogous to assigning larger weights
to within-subject contrasts in a crossover experiment (Diggle
et al., 2002, p. 63). One way of achieving this in our setting is
by GLS estimation with a suitably chosen reweighting matrix.

Since we do not explicitly estimate the spline coefficients
for f(-), we cannot immediately calculate optimal weights.
However, we can construct approximate weights based on an
estimate of the average magnitude of the y;, which is obtained
by regarding the y; as random effects in a linear mixed effects
model. We emphasize that the y, are fixed in a given geo-
graphic region, so we do not posit a random data-generating
mechanism, but we can still formally derive a mixed effects
model by regarding the y, as exchangeable (Gelman, 2005;
Hoff, 2009; Hodges and Reich, 2010). It may be that some of
the y; represent seasonality and others represent meteorology,
in which case we allow different random effect variances for
the distinct groups of exchangeable coefficients.

Take m = m; as in Section 5.1 and consider the formal
mixed model

yi = i(t)Be + 8(t) B + 2B, + H, (1;)y,, + &, (6)

where unlike our treatment of (3) we regard y,, as a random
effect. If all components of y,, are exchangeable (e.g., if they
are all coefficients for temporal spline functions), the random
effect model has a diagonal homoscedastic covariance matrix.
If there are multiple groups of exchangeable coefficients in p,,
we allow separate homoscedastic diagonal covariance matrices
for each group, with a separate variance estimate for each
group.

Let W~! be the marginal covariance matrix for the y; based
on estimated variances of y,, and the ¢;. This can be obtained
by restricted maximum likelihood (REML) using standard
software such as the NLME package (Pinheiro et al., 2010)
in R (R Development Core Team, 2010). We obtain B, by
fitting (5) using GLS with weight matrix W. GLS is more
efficient than OLS because it takes advantage of the shared
residual structure between observations.

Point estimates from GLS are identical to those from di-
rectly fitting the mixed model in (6), so little additional pro-
gramming is required. However, standard errors based on
treating the fixed y; as if they were stochastic cannot be as-
sumed to be valid, and in some of our simulations they un-
derestimate the variability of B, (not shown). Therefore, we
emphasize the GLS interpretation and further discuss stan-
dard error estimation in Web Appendix B.

6. Simulations

We simulate data according to (1) and (2) with g, = —0.5 and
no subject-specific covariates. The time period is T = 546 days
from September 2002 through February 2004 in six regions
denoted by R =0, ...,5. We consider cohorts with 1527 clus-
ters (as in MESA) or 300 clusters (smaller cohort) of average
size 3 (range 1-10). The cluster sizes are based on the distinct
groups of MESA subjects with follow-ups on the same date.

The temporal trend for the exposure is

2

g(f) = 0.87sin (365 (t+ 60R)) :
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Figure 1. Simulated exposure and outcome data for a single region from a cohort with 1527 clusters across six regions (total
of 781 subjects in this region). The gray dots are simulated observations, and the black curves are the assumed underlying

trends.

which corresponds to a seasonal annual pattern with a differ-
ent phase in each region. The outcome trend has the inverse
seasonal structure plus additional finer scale structure

ft)=a [—0.35 sin (%(H—GOR)) —0.48sin (%(H—GOR})]

We set the outcome trend multiplier @ = 1, 10, 20, 30, with
a =1 corresponding to the magnitude of seasonal variation
observed in the MESA data. Using B-splines, visual inspec-
tion shows that 7 df per year in each region are adequate to
accurately model g(-) (mo = 63) while 14 df per year in each
region are required for f(-) (m; = 126) (not shown).

The residuals in the health model are independent Gaus-
sian random variables with 2 = 124. The non-smooth part of
the exposure 7(-) is generated as independent Gaussian ran-
dom variables with o7 = 0.48. The values of o} and o] are
based on corresponding residual variances in our analysis of
the MESA data. We primarily report results based on a sin-
gle realization of n(-) across Monte Carlo simulations, which
we have argued in Section 3.3 is more scientifically plausible
than the alternative scenario of independent realizations in
each Monte Carlo simulation. The results with random n(-)
are similar to what we report below, except that there is no
bias even if we only use 7 df per year for seasonal adjustment.

Example realizations of simulated data are shown in Fig-
ure 1. Simulation results with 5000 Monte Carlo simulations
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Table 1
Simulation results with 7 degrees of freedom per year, based on 5000 Monte Carlo realizations for each scenario

Small study population (300 clusters)

Large study population (1527 clusters)

Rel. bias SD E(SE) 95% CI Rel bias SD E(SE) 95% CI
Outcome trend multiplier ¢ = 1
NO-ADJ 0.37 (0.012) 0.41 0.40 92% 0.36 (0.005) 0.17 0.18 83%
SEMIPAR (7 df/year) 0.01 (0.018) 0.65 0.63 95% 0.00 (0.007) 0.25 0.25 95%
SEMIPAR + GEE (7 df/year) 0.01 (0.018) 0.65 0.55 91% 0.00 (0.007) 0.25 0.24 94%
PRE-OLS (7 df/year) 0.00 (0.016) 0.56 0.54 94% 0.00 (0.007) 0.24 0.24 95%
PRE-GLS (7 df/year) 0.00 (0.016) 0.56 0.54 94% 0.00 (0.007) 0.24 0.24 95%
Outcome trend multiplier « = 10
NO-ADJ 3.58 (0.014) 0.49 0.42 2% 3.58 (0.006) 0.21 0.19 0%
SEMIPAR (7 df/year) —0.04 (0.021) 0.73 0.65 92% —0.05 (0.008) 0.28 0.26 92%
SEMIPAR + GEE (7 df/year) —0.04 (0.021) 0.73 0.62 91% —0.05 (0.008) 0.28 0.28 94%
PRE-OLS (7 df/year) —0.07 (0.019) 0.66 0.64 94% —0.06 (0.008) 0.28 0.29 96%
PRE-GLS (7 df/year) —0.07 (0.019) 0.66 0.63 94% —0.06 (0.008) 0.28 0.29 96%
Outcome trend multiplier o= 20
NO-ADJ 7.15 (0.019) 0.67 0.48 0% 7.15 (0.008) 0.29 0.21 0%
SEMIPAR (7 df/year) —0.09 (0.026) 0.93 0.70 86% —0.11 (0.010) 0.36 0.28 87%
SEMIPAR + GEE (7 df/year) —0.09 (0.026) 0.93 6.50 91% —0.11 (0.010) 0.36 0.38 96%
PRE-OLS (7 df/year) —0.15 (0.025) 0.88 0.87 94% —0.11 (0.011) 0.37 0.42 97%
PRE-GLS (7 df/year) —0.14 (0.025) 0.88 0.85 94% —0.11 (0.010) 0.36 0.39 96%
Outcome trend multiplier o= 30
NO-ADJ 10.71 (0.025) 0.90 0.58 0% 10.73 (0.011) 0.39 0.25 0%
SEMIPAR (7 df/year) —0.14 (0.034) 1.20 0.79 80% —0.16 (0.013) 0.47 0.32 81%
SEMIPAR + GEE (7 df/year) ~ —0.14 (0.034) 1.20  1.02  91% —0.16 (0.013) 047 051  96%
PRE-OLS (7 df/year) —0.23 (0.033) 1.16 1.16 94% —0.17 (0.014) 0.49 0.57 97%
PRE-GLS (7 df/year) —0.21 (0.033) 1.17 1.10 93% —0.17 (0.013) 0.47 0.51 96%

The exposure deviations n; are fixed across all Monte Carlo realizations. For each simulation scenario and estimation method, we report
the mean relative bias in estimating 8, = —0.5 and Monte Carlo standard error in parentheses, the empirical standard deviation of ﬁx, the
mean estimated standard error, and coverage of 95% Wald confidence intervals. No adjustment is denoted by NO-ADJ, semiparametric
adjustment is denoted by SEMIPAR, and pre-adjustment followed by OLS and GLS are denoted by PRE-OLS and PRE-GLS, respectively.
SEMIPAR + GEE refers to the variant of using GEE standard error estimates with SEMIPAR estimation.

in each scenario are reported in Tables 1 (7 df per year)
and 2 (14 df per year). We report relative bias, the observed
standard deviation (SD) of f, the mean estimated standard
error (SE) of B, and coverage of 95% confidence intervals
(CIs). No adjustment is denoted by NO-ADJ, semiparametric
adjustment is denoted by SEMIPAR, and pre-adjustment
followed by OLS and GLS are denoted by PRE-OLS and
PRE-GLS, respectively. For NO-ADJ and SEMIPAR we use
classical standard errors estimates, and for PRE-OLS and
PRE-GLS we use GEE standard error estimates. We also con-
sider, as a variant, using GEE standard error estimates with
SEMIPAR.

6.1.
There is noticeable bias in Ex when no seasonal adjustment is
made. The bias is completely eliminated by SEMIPAR, PRE-
OLS, and PRE-GLS when we use 14 df per year in each region,
the number of df required to account for seasonality in the
outcome. There is some residual bias if we only use 7 df per
year, especially for larger values of «.

All three adjustment approaches have good inferential
properties when we use 14 df/year. The mean estimated SEs
are close to the observed SDs, and we see nearly nominal cov-
erage for 95% Cls. SE estimates are slightly conservative for
PRE-OLS with 1527 clusters. This may be attributed to our

Bias and Confidence Interval Coverage

data-based determination of which subjects to include in a
cluster.

The SE estimates from SEMIPAR with 7 df/year are too
small for larger values of «, resulting in undercoverage of 95%
ClIs. Results are improved by GEE SEs, but bias remains and
numerical instability is a concern due to the small number of
independent clusters compared to df in the SEMIPAR model.
In particular, standard software fails to calculate GEE stan-
dard errors in a small number of our 5000 realizations (7
df/year: 1 with 300 clusters, 0 with 1527 clusters; 14 df/year:
81 with 300 clusters, 1 with 1527 clusters). We report these
results only for 7 df/year and exclude the one problematic
realization. The SE estimates from PRE-OLS and PRE-GLS
remain accurate when we use 7 df/year and, despite the resid-
ual bias, 95% CI coverage is close to nominal.

6.2. Relative Efficiency

We focus on simulations with 300 clusters where we use 14 df
per year for adjustment (the first four columns in Table 2).
Similar patterns in relative efficiency are evident when we
simulate a larger cohort with 1527 clusters, although the dif-
ferences are considerably smaller. Given the residual bias with
7 df per year, relative efficiency may be of less interest, but
the general patterns are similar, although somewhat less pro-
nounced.



Estimating Acute Air Pollution Health Effects

171

Table 2
Stmulation results with 14 degrees of freedom per year, based on 5000 Monte Carlo realizations for each scenario

Small study population (300 clusters)

Large study population (1527 clusters)

Rel. bias SD E (SE) 95% CI Rel. bias SD E (SE) 95% CI

Outcome trend multiplier @ = 1

NO-ADJ 0.37 (0.012) 0.41 0.40 92% 0.36 (0.005) 0.17 0.18 83%

SEMIPAR (14 df/year) 0.01 (0.022) 0.78 0.77 94% 0.00 (0.007) 0.26 0.26 95%

PRE-OLS (14 df/year) 0.01 (0.016) 0.56 0.54 94% 0.00 (0.007) 0.24 0.24 95%

PRE-GLS (14 df/year) 0.01 (0.016) 0.56 0.54 94% 0.00 (0.007) 0.24 0.24 95%
Outcome trend multipliere = 10

NO-ADJ 3.58 (0.014) 0.49 0.42 2% 3.58 (0.006) 0.21 0.19 0%

SEMIPAR (14 df/year) 0.01 (0.022) 0.78 0.77 94% 0.01 (0.007) 0.26 0.26 95%

PRE-OLS (14 df/year) —0.01 (0.019) 0.66 0.64 94% 0.00 (0.008) 0.28 0.30 96%

PRE-GLS (14 df/year) 0.00 (0.019) 0.66 0.63 94% 0.00 (0.007) 0.25 0.25 95%
Outcome trend multiplier o= 20

NO-ADJ 7.15 (0.019) 0.67 0.48 0% 7.15 (0.008) 0.29 0.21 0%

SEMIPAR (14 df/year) 0.01 (0.022) 0.78 0.77 94% 0.01 (0.007) 0.26 0.26 95%

PRE-OLS (14 df/year) —0.04 (0.025) 0.90 0.88 94% 0.00 (0.011) 0.38 0.43 97%

PRE-GLS (14 df/year) 0.00 (0.021) 0.74 0.69 94% 0.01 (0.007) 0.26 0.26 95%
Outcome trend multiplier « = 30

NO-ADJ 10.71 (0.025) 0.90 0.58 0% 10.73 (0.011) 0.39 0.25 0%

SEMIPAR (14 df/year) 0.02 (0.022) 0.78 0.77 94% 0.01 (0.007) 0.26 0.26 95%

PRE-OLS (14 df/year) —0.06 (0.034) 1.18 1.18 94% 0.00 (0.014) 0.50 0.58 98%

PRE-GLS (14 df/year) 0.01 (0.021) 0.75 0.71 93% 0.01 (0.007) 0.26 0.26 95%

The exposure deviations 7, are fixed across all Monte Carlo realizations. For each simulation scenario and estimation method, we report
the mean relative bias in estimating 8, = —0.5 and Monte Carlo standard error in parentheses, the empirical standard deviation of ﬁx, the
mean estimated standard error, and coverage of 95% Wald confidence intervals. No adjustment is denoted by NO-ADJ, semiparametric
adjustment is denoted by SEMIPAR, and pre-adjustment followed by OLS and GLS are denoted by PRE-OLS and PRE-GLS, respectively.

We first consider scenarios with relatively small magnitudes
of trend in the outcome. With o =1, the SD of ,éx is 0.78
using SEMIPAR and 0.56 using PRE-OLS and PRE-GLS,
which implies the relative efficiency of SEMIPAR, compared
to either PRE-OLS or PRE-GLS is 0.52 (ratio of variances).
Similarly, with o = 10, the relative efficiency of SEMIPAR
compared to either PRE-OLS or PRE-GLS is 0.72. Consistent
with our expectations, we gain efficiency by pre-adjusting the
exposure, and there is no benefit from using GLS rather than
OLS since the trend is not an important precision variable.

Turning now to scenarios with larger magnitudes of trend
in the outcome, PRE-GLS is consistently the most efficient
analysis. The relative efficiency of PRE-OLS is 0.68 for o« = 20
and 0.40 for & = 30, and the relative efficiency of SEMIPAR is
0.95 for & = 20 and 0.92 for & = 30. Thus, consistent with our
expectations, we see that ignoring the trend as a precision
variable in PRE-OLS results in less efficiency compared to
either SEMIPAR or PRE-GLS. Furthermore, it turns out that
PRE-GLS is slightly more efficient that SEMIPAR when it is
important to take advantage of the structure in the trend.

7. Application to Retinal Arteriolar Data

We reanalyze the data from Adar et al. (2010) to compare
the impact of different temporal adjustment methods. We
adjust for the full set of subject-specific covariates and use
SEMIPAR, PRE-OLS, and PRE-GLS for calendar date, tem-
perature, and relative humidity with separate B-splines with
interactions by region. We also include a day-of-week term
with regional interaction. We vary the df in each region be-
tween 0 and 20 per year for seasonality and 0 and 9 for the

meteorology variables. For PRE-GLS, calendar date, temper-
ature, and relative humidity are independent random effects
in the mixed model formulation.

Figure 3a suggests that results are minimally sensitive to
the method of adjustment for temporal confounding. This
is consistent with Figure 2, since the trend in the outcome
appears small compared to the overall variability, similar to
a = 1 in our simulations. Closer examination of the results in
Figure 3a, however, reveals efficiency gains. If we follow Adar
et al. (2010) and use 12 df per year for calendar time and 6 df
for meteorology in each region, the relative efficiency of SEMI-
PAR compared to PRE-OLS or PRE-GLS is 0.76. The 95%
confidence interval for SEMIPAR crosses zero, while the confi-
dence intervals for PRE-OLS and PRE-GLS do not, meaning
our proposed methodology results in a statistically significant
association, whereas SEMIPAR does not. Of course, great
care is needed in interpreting such marginally significant
findings. To further illustrate the efficiency gains, in Figure 3b
we show results for a randomly selected subset of 1000 MESA
subjects. With the same df as above, the relative efficiency
of SEMIPAR compared to PRE-OLS or PRE-GLS is 0.69.

8. Discussion

The need to adjust for temporal confounding in estimating
acute air pollution effects is well known, especially in time
series studies. Extension of time series methods to air pollu-
tion cohort data requires some care due to differences in data
availability and plausible assumptions about randomness. A
noteworthy difference is that air pollution cohort studies will
often include data for exposure on days where there is no
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Figure 2. Data from the study of the association between short-term air pollution exposure and retinal arteriolar diameter
in six MESA cities (plus four meteorology zones in Los Angeles). For each plot, time series are shown of temperature, relative
humidity, and PM, 5 concentration in the first three rows. The fourth row shows all available measurements of central retinal

arteriolar equivalents (CRAE) on each day.

outcome data. We demonstrate that pre-adjusting the expo-
sure rather than fitting a semiparametric regression model
can result in increased efficiency by utilizing the additional
exposure data. This approach can be improved further by es-
timating the health effect parameter of interest using GLS
with a weight matrix determined by a formal random effects
model.

Our simulation studies suggest that the advantage of pre-
adjustment is most pronounced when two conditions are met,
namely (i) the cohort is relatively small (in particular, smaller
than MESA) such that there is no health outcome data on
most days in the study period and (ii) the magnitude of tem-
poral trend in the outcome data is small compared to the
overall variability. When the trend in the outcome data is
larger, the temporal adjustment terms are precision variables
in the semiparametric adjustment, and pre-adjustment fol-
lowed by OLS is less efficient. However, even in that situ-
ation pre-adjustment with GLS is at least as efficient as the
standard semiparametric approach. Therefore, we recommend

pre-adjustment followed by GLS in smaller cohort studies
where there is reason to be concerned about the number of
degrees of freedom required to robustly adjust for temporal
confounding.

Our development emphasizes the importance of adjust-
ing for temporal confounding with a sufficiently rich model
to account for temporal trends in the outcome, and ideally
any subject-specific covariates with temporal structure. Inter-
subject variability presents a challenge for estimating the re-
quired model richness from cohort data, so it is even more
important than in time series studies to rely on prior scien-
tific knowledge and to conduct sensitivity analyses with dif-
ferent levels of temporal adjustment. While we have focused
on cross-sectional cohort studies, similar issues can arise if
longitudinal cohort data or certain types of panel study data
are used to study acute air pollution health effects (Dominici
et al., 2003).

Hodges and Reich (2010) point out the danger of introduc-
ing bias by using a formal mixed effects model as a device
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Figure 3. Estimated increase in CRAE (um) corresponding to a 10 pg/m? increase in daily PMa s concentration. Semi-
parametric regression and detrended exposure with and without shrinkage are employed with varying degrees of freedom to
control for meteorology (separate splines for relative humidity and temperature in each zone) and calendar time (separate
splines in each city). Solid lines are point estimates and dashed lines are 95% confidence intervals. Semiparametric adjustment
is denoted by SEMIPAR and pre-adjustment followed by OLS and GLS are denoted by PRE-OLS and PRE-GLS, respectively.
Point estimates for PRE-OLS and PRE-GLS are indistinguishable. (a) Full MESA cohort (4,607) subjects. (b) Randomly

selected subset of MESA cohort (1,000 subjects).

for smoothing when there is no random effect in the data-
generating mechanism. It would appear that our GLS ap-
proach has the potential to introduce the bias they describe,
but it does not because by construction the pre-adjusted ex-
posure is orthogonal to the random effect basis functions and
to other covariates in the model in (6). If we were to use
shrinkage or penalization directly in the semiparametric re-
gression model in (3), there would be a possibility of bias as
described by Hodges and Reich (2010).

A recent article proposed Bayesian adjustment for con-
founding (BAC), a form of model averaging, to parsimo-
niously adjust for confounding in time series studies (Wang,
Parmigiani, and Dominici, 2012). A salient feature of BAC is
joint estimation of the exposure and disease models, in con-
trast to our two-stage approach. The confounding adjustment
in BAC is approximate and is most appropriate when there
are not sufficient data to support a complete confounder ad-
justment, whereas our methods efficiently use all of the avail-
able data to fully adjust for confounding, assuming the data
are sufficient.

In our example from MESA, exposure is defined to be the
concentration on the day prior to measurement of the reti-
nal arteriolar diameter. Other lags have been considered, in-
cluding the day of exposure and the average of several days
prior to exposure (Dominici et al., 2006). It is straightfor-
ward to adapt our discussion to any such pre-specified expo-
sure lag or averaging period. The unconstrained distributed
lag model (Schwartz, 2000), which provides a more flexible
framework for combining exposures from multiple days, how-
ever, presents additional complications because the exposure

is multivariate. Further research is needed to determine how
the pre-adjustment methodology can be adapted to this set-
ting.

We have treated short-term air pollution as spatially fixed
within regions. This is reasonable given that there is much
more temporal than spatial variability, but there is some ex-
posure misclassification from ignoring the spatial variability
The primary result of this is loss of statistical power to detect
small effects (Zeger et al., 2000). In principle, it is possible
to adapt a spatio-temporal prediction model such as the one
described by Szpiro et al. (2010) to produce daily exposure
predictions at subject locations. However, this has the poten-
tial to introduce additional exposure misclassification (Szpiro
and Paciorek, 2013), so inference about short-term air pollu-
tion effects may not be improved.

9. Supplementary Material

Web Appendices referenced in Sections 4.2 and 5.3 and ex-
ample code are available with this paper at the Biometrics
website on Wiley Online Library.
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